United States Patent

US009047299B1

(12) 10) Patent No.: US 9,047,299 B1
Ferrigno (45) Date of Patent: Jun. 2, 2015
(54) RECLAIMING BLOCKS FROM A 7,945,726 B2 5/2011 Faibish et al.
DIRECTORY 8,037,345 B1 10/2011 ch?r et al.
8,095,577 Bl 1/2012 Faibish et al.
. . . 8,204,871 Bl 6/2012 Pawar et al.
(71) Applicant: EMC Corporation, Hopkinton, MA 8285758 Bl 10/2012 Bono et al.
(US) 8,566,371 Bl 10/2013 Bono et al.
2003/0172094 Al* 9/2003 Lauriaetal. ... 707/206
(72) Inventor: James P. Ferrigno, Marlton, NJ (US) 2008/0005205 Al* 1/2008 Rajakarunanayake 707/205
2009/0077327 Al* 3/2009 Hara ..o, 711/154
(73) Assignee: EMC Corporation, Hopkinton, MA 2013/0218934 Al* 8/2013 Linetal. oo 707/828
(Us) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — James Trujillo
%a.tse.nct. lls SZ)((:):IL?(; 30(1ia2}1](ij.usted under 35 Assistant Examiner — Gra.ce Park .
(74) Attorney, Agent, or Firm — BainwoodHuang
21) Appl. No.: 13/721,844
(1) Appl. No ’ (57) ABSTRACT
(22) Filed: Dec. 20, 2012 A technique manages filesystem blocks of a filesystem. The
technique involves modifying an inode structure which iden-
(31) Int.ClL tifies a filesystem directory, the directory’s inode structure
GOGF 17/30 (2006.01) currently including a set of filesystem blocks which was
(52) US.CL) allocated to the directory’s inode structure to hold filesystem
CPC ... GOGF 17/30117 (2013.01); GO6F 123)/1330%318 data. The technique further involves, after modifying the
(58) Field of Classification S h (01) directory’s inode structure, performing a directory check
CII(: c ol assilica l((;g 6;’?;?3 0117: GOGF 17/30067 operation to determine whether the filesystem directory is
USP C """""""""" ’ 707/328 empty. The technique further involves reclaiming, from the
See apphcatlon ﬁle forcomplete searchhlstory directory’s inode structure, the set of filesystem blocks which
’ was allocated to the directory’s inode structure to hold the
(56) References Cited filesystem data when a result of the directory check operation

U.S. PATENT DOCUMENTS

7,631,155 Bl 12/2009 Bono et al.
7,694,191 Bl 4/2010 Bono et al.
7,818,535 Bl 10/2010 Bono et al.
7,873,619 Bl 1/2011 Faibish et al.

indicates that the filesystem directory is empty, and not
reclaiming the set of filesystem blocks from the directory’s
inode structure when the result of the directory check opera-
tion indicates that the filesystem directory is not empty.

22 Claims, 7 Drawing Sheets

200
/
¥
MODIFY AN INODE STRUCTURE WHICH IDENTIFIES A
FILESYSTEM DIRECTORY, THE INODE STRUCTURE
CURRENTLY INCLUDING A SET OF FILESYSTEM BLOCKS
WHICH WAS ALLOCATED TO THE INODE STRUCTURE TO
HOLD FILESYSTEM DATA .
202
/
~ PERFORM
DIRECTORY CHECK
EMPTY OPERATION TO DETERMINE NOT EMPTY

v

RECLAIM THE SET OF
FILESYSTEM BLOCKS WHICH
WAS ALLOCATED TO THE
INODE STRUCTURE TO HOLD
THE FILESYSTEM DATA

206

WHETHER THE DIRECTORY
IS EMPTY (E.G., EVALUATE
FILE COUNT

FIELD)

N

DO NOT RECLAIM THE SET OF
FILESYSTEM BLOCKS WHICH
WAS ALLOCATED TO THE
INODE STRUCTURE TO HOLD

THE FILESYSTEM DATA
208

U.S. Patent Jun. 2, 2015 Sheet 1 of 7 US 9,047,299 B1

20
\ EXTERNAL . s
DEVICE(S) 24 26
K 60
ELECTRONIC APPARATUS 22

CONSTRUCTED AND ARRANGED TO RECLAIM
BLOCKS FROM DIRECTORY INODE STRUCTURES
(E.G., DATA STORAGE ASSEMBLY,
STANDALONE COMPUTER, ETC.)

| NETWORK INTERFACE 30 ‘

‘ USER INTERFACE 32 ‘

38

M MEMORY 34
o (VOLATILE AND NON-VOLATILE)

‘ HIGH-LEVEL APPLICATION(S) 40 ‘

‘ OPERATING SYSTEM 42 ‘

FILESYSTEM 44 INCLUDING FILES 46
(E.G., DIRECTORY FILES,
ORDINARY FILES, ETC.)

AVAILABLE STORAGE 48
INCLUDING POOL 50 OF
FREE FILESYSTEM BLOCKS 52

PROCESSING CIRCUITRY 36
(E.G., ONE OR MORE PROCESSORS, FPGAS,
ASICS, ANALOG CIRCUITRY, ETC.)

FIG. 1

U.S. Patent

Jun. 2, 2015 Sheet 2 of 7

INODE STRUCTURE 80
FOR A DIRECTORY

FILE INFO FIELDS 84

PERMISSION FIELDS 86

TYPE OF FILE FIELD 88

ENTRY COUNT FIELD 90

BLOCK MAP POINTER
FIELDS 92

FIG. 2

94

US 9,047,299 B1

US 9,047,299 B1

Sheet 3 of 7

Jun. 2, 2015

U.S. Patent

{<|\

01 37189v1 3AONI

A

€9l

_ g oo} T TL (2n Tmsm:o_im T; (1 i

ve 61 0
I I
{2J00T AYLNA T1J00T AYLINT
AYOLO3dId AHOLO3dIa

V/

00l

US 9,047,299 B1

Sheet 4 of 7

Jun. 2, 2015

U.S. Patent

¥ 'Ol

(9J00F AYLN3 A¥OLOTFHIA

A

(SJO0T AMLN3 AMOLO3¥IA

A

(FJOOF AYLNI AMOLOFHIA

A

{(EJ00F AYLN3 A¥OLO3HIA

{2I00F AYLNI AMOLO3HIa

A

(FJO0F AYLN3 A¥OLOFHIA

A

06 /| 9

76 NOILYOd NIV

AYHO1D3MIa
JHLOL
a3aav 3uv
9p s34 SY
06 Y0019
— W3LSASTI4
3344 40
700d WOH4
a3alvooTv
SHM20719
SIANSNOD

001

08

US 9,047,299 B1

Sheet S of 7

Jun. 2, 2015

U.S. Patent

G "Old

{9J00) AYLNI AMOLO3NIA

A

{GJ00F AYLNI AHOLO3HIA

I

RN RO,

PEVRUNANIOLSRIO,

(1001 AYLN3 AMOL1D3HIA

A

06 /| €

76 NOILYOd NIV

AJO103dIa
JHLOL
a43aav 3uv
9% s34 SV
06 sy001d
~ W3LSASITA
3344 40
700d WOYd
a3alvoo1v
SHMO071d
S3IANSNOD

US 9,047,299 B1

Sheet 6 of 7

Jun. 2, 2015

U.S. Patent

3sSN3Y ™04

3AS31d 334 401004 FHL OL
AINANLTFY Y

0% 0019 WA 1SAST IS

3344 40

700d WO¥A

a31LvooTv

800714

o 0]

#6 NOILYOd NIVIN

991d

Loy
O]
PR
R O]

O]
TR R

o 0]

¥6 NOLLYOd NIV

00L

U.S. Patent Jun. 2, 2015 Sheet 7 of 7 US 9,047,299 B1

200

MODIFY AN INODE STRUCTURE WHICH IDENTIFIES A
FILESYSTEM DIRECTORY, THE INODE STRUCTURE
CURRENTLY INCLUDING A SET OF FILESYSTEM BLOCKS
WHICH WAS ALLOCATED TO THE INODE STRUCTURE TO
HOLD FILESYSTEM DATA ™~ 202

PERFORM
DIRECTORY CHECK
EMPTY OPERATION TO DETERMINE
WHETHER THE DIRECTORY
IS EMPTY (E.G., EVALUATE
FILE COUNT
FIELD)

NOT EMPTY

204

y v
RECLAIM THE SET OF DO NOT RECLAIM THE SET OF
FILESYSTEM BLOCKS WHICH FILESYSTEM BLOCKS WHICH
WAS ALLOCATED TO THE WAS ALLOCATED TO THE
INODE STRUCTURE TO HOLD INODE STRUCTURE TO HOLD
THE FILESYSTEM DATA ™. 206 THE FILESYSTEM DATA ™. 208

FIG. 7

US 9,047,299 B1

1
RECLAIMING BLOCKS FROM A
DIRECTORY

BACKGROUND

In some conventional computer systems, the operating sys-
tem references files using inode structures. Examples of such
files include ordinary files which store application data, and
directories which store directory entries to represent files
residing in the directories.

When the operating system creates a directory, the operat-
ing system allocates an inode structure to represent that direc-
tory. As files are placed in the directory, the operating system
allocates blocks to the directory’s inode structure to hold
directory entries which map filenames of the files to the inode
numbers of the files. As files are deleted from the directory,
the operating system invalidates the directory entries corre-
sponding to the deleted files, e.g., by replacing the inode
numbers in those directory entries with zeroes. Examples of
operating systems which operate in a manner similar to that
described above include various versions of UNIX®.

SUMMARY

Unfortunately, there are deficiencies with the above-de-
scribed conventional computer system in which the operating
system simply invalidates directory entries (e.g., by replacing
inode numbers with zeroes). In particular, the blocks which
are allocated to the directory’s inode structure to hold direc-
tory entries are never released back to the computer system
even if the directory’s inode structure no longer contains any
valid directory entries. Rather, since the directory’s inode
structure retains the allocated blocks, the size of the directo-
ry’s inode structure increases over time and performance in
accessing directory entries is negatively affected. Moreover,
as the size of directory’s inode structure increases, the supply
of available blocks within the computer system decreases.

In contrast to the above-described conventional computer
systems which do not release blocks even if the directories no
longer contain files, improved techniques involve automati-
cally releasing filesystem blocks from a directory’s inode
structure back to an available pool of filesystem blocks when
the number of valid directory entries in the directory’s inode
structure becomes zero, i.e., when the directory becomes
empty. Such techniques may prevent the size of the directo-
ry’s inode structure from always increasing, e.g., the directo-
ry’s inode structure may be restored to its original size when
the directory becomes empty. Accordingly, performance in
accessing any new files which are subsequently added to that
directory is improved. Furthermore, release of filesystem
blocks back to the available pool of filesystem blocks replen-
ishes the supply of free filesystem blocks for subsequent
re-use.

It should be understood that the term “directory” refers to
an inode structure that has been allocated and populated with
information to identify that directory. It should be further
understood that “a file in a directory™ refers to a filesystem
object (or abstraction) that is identified by a valid directory
entry stored in a set of blocks which has been allocated to the
inode structure identifying that directory. One will appreciate
that the number of files in a directory and the number of valid
directory entries stored in the set of blocks which has been
allocated to the inode structure identifying that directory may
be different (e.g., multiple links may identify the same file).

One embodiment is directed to a method of managing
filesystem blocks of a filesystem. The method includes modi-
fying an inode structure which identifies a filesystem direc-

10

15

20

25

30

35

40

45

50

55

60

65

2

tory, the directory’s inode structure currently including a set
of filesystem blocks which was allocated to the directory’s
inode structure to hold filesystem data. The method further
includes, after modifying the directory’s inode structure, per-
forming a directory check operation to determine whether the
filesystem directory is empty. The method further includes
reclaiming, from the directory’s inode structure, the set of
filesystem blocks which was allocated to the directory’s
inode structure to hold the filesystem data when a result of the
directory check operation indicates that the filesystem direc-
tory is empty, and not reclaiming the set of filesystem blocks
from the directory’s inode structure when the result of the
directory check operation indicates that the filesystem direc-
tory is not empty.

In some arrangements, the directory’s inode structure
includes an entry count field which stores an entry count value
identifying the number of valid directory entries currently
residing in the directory (i.e., in the directory’s inode struc-
ture). Removing a directory entry from a directory involves
marking the specific directory entry in such a manner as to
indicate that the specific directory entry is no longer valid, and
updating the entry count field to store a new entry count value.
Additionally, ascertaining whether the directory is empty
involves reading the new entry count value from the entry
count field and, based on the new entry count value, deter-
mining whether the number of valid directory entries cur-
rently residing in the directory is zero.

In some arrangements, reclaiming the set of filesystem
blocks which was allocated to the directory’s inode structure
includes returning the set of filesystem blocks to the pool of
free filesystem blocks. As a result, the returned filesystem
blocks are available for re-allocation.

It should be understood that each inode structure includes
a type of file field which stores a type indicator indicating a
file type. In some arrangements, returning the set of filesys-
tem blocks to the pool of free filesystem blocks for re-alloca-
tion includes (i) copying contents of the directory’s inode
structure to a new inode structure, (ii) overwriting, in a type of
file field of the new inode structure, a copy of a directory type
indicator with an ordinary type indicator to indicate that the
new inode structure identifies an ordinary file, (iii) submitting
the new inode structure to a cleanup routine which processes
the new inode structure as if an ordinary file has been deleted
from the filesystem to return the set of filesystem blocks to the
pool of free filesystem blocks, and (iv) resetting fields in the
directory’s inode structure to a state that is equivalent to a
newly allocated inode, i.e., an inline state.

Other embodiments are directed to electronic systems and
apparatus, processing circuits, computer program products,
and so on. Some embodiments are directed to various pro-
cesses, electronic components and circuitry which are
involved in reclaiming blocks from a directory.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the present disclosure, as illustrated in the
accompanying drawings in which like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being
placed upon illustrating the principles of various embodi-
ments of the present disclosure.

FIG. 1is a block diagram of an electronic apparatus which
reclaims blocks of a directory when the directory becomes
empty.

US 9,047,299 B1

3

FIG. 2 is a block diagram of an inode structure managed by
the electronic apparatus of FIG. 1 to identify a directory.

FIG. 3 is a block diagram of a portion of the directory’s
inode structure of FIG. 2 which identifies files residing in the
directory.

FIG. 4 is a block diagram of an example directory’s inode
structure managed by the electronic apparatus of FIG. 1 ata
particular time of operation.

FIG. 5 is a block diagram of the example directory’s inode
structure managed by the electronic apparatus of FIG. 1 at
another time of operation.

FIG. 6 is a block diagram of the example directory’s inode
structure managed by the electronic apparatus of FIG. 1 at yet
another time of operation.

FIG. 7 is a flowchart of a procedure which is performed by
the electronic apparatus of FIG. 1 to reclaim blocks of a
directory when the directory becomes empty.

DETAILED DESCRIPTION

An improved technique involves automatically releasing
filesystem blocks from a directory’s inode structure back to
an available pool of filesystem blocks when the number of
files in the directory becomes zero, i.e., when there are no
valid directory entries in the directory’s inode structure. Such
a technique prevents the size of directory’s inode structure
from always increasing, e.g., the inode structure of the direc-
tory is restored to its original size when the directory becomes
empty. As a result, performance in accessing new files which
are subsequently added to a downsized directory is improved.
Furthermore, release of filesystem blocks back to the avail-
able pool of filesystem blocks replenishes the supply of free
filesystem blocks for subsequent re-use.

FIG. 1 shows an electronic environment 20 which supports
reclamation of blocks of a directory’s inode structure when
the directory becomes empty. The electronic environment 20
includes an electronic apparatus 22, external device(s) 24,
and a communications medium 26.

The electronic apparatus 22 includes a network interface
30, a user interface 32, memory 34, and processing circuitry
36. The memory 34 stores a variety of memory constructs 38
including, among other things, a set ofhigh-level applications
40, an operating system 42, a filesystem 44 having files 46,
and available storage 48 having a pool 50 of free filesystem
blocks (or extents) 52.

The network interface 30 is constructed and arranged to
connect the electronic apparatus 22 to the communications
medium 26. Accordingly, the network interface 30 enables
the electronic apparatus 22 to communicate with the other
components of the electronic environment 20 such as an
external device 24.

The user interface 32 is constructed and arranged to receive
input from a user and provide output to the user, i.e., user I/O.
Examples of suitable user interface components include a
keyboard, a mouse, a display, a touch display pad, a service
processor, and so on.

The memory 34 includes both volatile memory (e.g.,
DRAM, SRAM, etc.) and non-volatile memory (e.g., flash
storage units, magnetic disk drives, etc.). The high level appli-
cations 40 represent programs that store data within and
retrieve data from the files 46 of the filesystem 44 (e.g., user
level applications, client/server applications, etc.). The oper-
ating system 42 refers to a kernel, drivers, libraries, utilities
and tools, and so on. The filesystem 44 refers to a hierarchi-
cally arranged set of files 46 (e.g., directories, ordinary files,

15

20

25

40

45

55

4

associated metadata, etc.). The available storage 48 refers to
unused memory including the pool 50 of free filesystem
blocks 52.

The processing circuitry 36 is constructed and arranged to
perform useful work while running in accordance with cer-
tain memory constructs 38 (e.g., the high level applications
40, the operating system 42, etc.). It should be understood that
the processing circuitry 36 can be implemented in a variety of
ways including via one or more processors running special-
ized software, application specific ICs (ASICs), field pro-
grammable gate arrays (FPGAs) and associated programs,
discrete components, analog circuits, other hardware cir-
cuitry, combinations thereof, and so on.

In the context of one or more processors running special-
ized software, a computer program product 60 is capable of
delivering all or portions of the software to the electronic
apparatus 22. The computer program product 60 has a non-
transitory (or non-volatile) computer readable medium which
stores a set of instructions which controls one or more opera-
tions of the electronic apparatus 22. Examples of suitable
computer readable storage media include tangible articles of
manufacture and apparatus which store instructions in a non-
volatile manner such as CD-ROM, flash memory, disk
memory, tape memory, and the like.

Based on the above-provided description of the electronic
apparatus 22, it should be understood that the electronic appa-
ratus 22 is well-provisioned to perform a variety of opera-
tions. For example, the electronic apparatus 22 may operate
as a server such as a data storage server, a file server, a web
server, a database server, and so on. Additionally, the elec-
tronic apparatus 22 may operate as a client such as a user
workstation, a portable or mobile user device, a general pur-
pose computer, a specialized computer, and so on.

Itshould be understood that, in the context of a data storage
assembly or array, the non-volatile portion of the memory 34
may be tiered based onaccess speed. For example, the storage
may include a first tier of flash memory, a second tier of SAS
memory, and a third tier of near line SAS memory. Further-
more, in this context, one or more of the external device(s) 24
may be a host device which sends host 10s (e.g., SCSI read
and write operations) to the electronic apparatus 22 for pro-
cessing.

It should be further understood that the communications
medium 26 connects the various components of the electronic
environment 20 together to enable these components to
exchange electronic signals 70 (e.g., see the double arrow 70).
At least a portion of the communications medium 26 is illus-
trated as a cloud to indicate that the communications medium
26 is capable of having a variety of different topologies
including backbone, hub-and-spoke, loop, irregular, combi-
nations thereof, and so on. Along these lines, the communi-
cations medium 26 may include copper-based data commu-
nications devices and cabling, fiber optic devices and cabling,
wireless devices, combinations thereof, etc. Furthermore, the
communications medium 26 is capable of supporting LAN-
based communications, SAN-based communications, or
combinations thereof.

During operation, the electronic apparatus 22 maintains
the filesystem 44 in the memory 34. In particular, the process-
ing circuitry 36 while executing code of the operating system
42 may add, delete, and/or modify the files 46 of the filesys-
tem 44. The files 46 may include directory files (or simply
directories), ordinary (or regular) files, as well as other file
types (e.g., special files, links, pipes, sockets, etc.). For
example, the processing circuitry 36 may create a filesystem
directory and place other files within that directory in
response to user input, in response to instructions from an

US 9,047,299 B1

5

application 40, in response to commands from an external
device 24, combinations thereof, and so on. The directory
may form one node of a directory hierarchy (e.g., parent and
child directories arranged in an inverted tree formation).

To create a directory, the processing circuitry 36 allocates
an inode structure from an inode table, and configures the
inode structure and perhaps other filesystem metadata (e.g.,
sets up ownership, permissions, location within the directory
hierarchy, etc.). As other files 46 are placed within the direc-
tory, the processing circuitry 36 allocates filesystem blocks
52 from the pool 50 of free filesystem blocks 52 to hold
directory entries corresponding to the other files 46, i.e.,
mappings of an inode number and a filename for each file 46
within that directory. Additionally, the processing circuitry 36
maintains a count of the number of valid directory entries in
each directory. As will be explained in further detail shortly,
the processing circuitry 36 monitors this count to automati-
cally reclaim blocks 52 if the directory becomes empty, i.e., if
the number of valid directory entries becomes zero. Further
details will now be provided with reference to FIGS. 2 and 3.

FIGS. 2 and 3 show particular details of an inode structure
80 which identifies a directory. FIG. 2 shows a general view of
an example format for the directory’s inode structure 80. FI1G.
3 shows a general view of an example set of directory entries
which identify other files 46 residing in the directory.

With reference to FIG. 2, the directory’s inode structure 80
includes a set of fields 82 which holds information about the
directory. The set of fields 82 includes file info fields 84,
permission fields 86, a type of file field 88, an entry count field
90, and block map pointer fields 92, among others. The con-
tents of the file info fields 84 indicate certain items of infor-
mation about the file 46 such as the size of the file 46, the
device ID, and so on. The contents of the permission fields 86
indicate permission attributes of the file 46 such as the user
1D, the group 1D, access permissions, etc. The contents of the
type of file field 88 indicate the file type (or mode) which, in
this case, indicates that the file 46 is a directory. The contents
of'the entry count field 90 indicate the number of valid direc-
tory entries that currently reside within the directory. The
contents of the block map pointer fields 92 are pointers which
identify directly or indirectly allocated blocks that contain
mappings corresponding to the other files 46 that reside
within the directory (i.e., valid directory entries that the file-
system uses to lookup and access other files 46).

It should be understood that the directory’s inode structure
80 may include other fields to store other attributes as well.
Such attributes may include the number of links, the time of
last access, the time of last modification, and so on.

It should be further understood that not all of the fields 82
are initially required by the directory’s inode structure 80. For
example, bracket 94 identifies a main portion of the directo-
ry’s inode structure 80 having particular fields 82 which are
suitable for use upon initial creation of the directory, i.e.,
when the directory is in an “inline” state. Later, as files 46 are
incrementally added to the directory, the processing circuitry
36 allocates blocks 52 from the pool 50 of free filesystem
blocks 52 to hold directory entries identifying the added files
46, and updates the block map to identify these allocated
blocks 52.

As shown in FIG. 3, each directory entry 100 identifies an
inode of inode table 102. In particular, the directory entry
100(1) maps a filename “filename1” to inode i(1) of the inode
table 102. Similarly, the directory entry 100(2) maps a file-
name “foo_ 2" to inode i(2) of the inode table 102, and so on.

As mentioned earlier, as files 46 are added to the directory,
the processing circuitry 36 allocates blocks 52 from the pool
50 of free filesystem blocks 52 (FIG. 1) to the directory’s

10

15

20

25

30

35

40

45

50

55

60

65

6

inode structure 80 (FIG. 2) to enable the directory’s inode
structure 80 to store the directory entries 100 for the added
files 46. As will now be explained with reference to an
example and FIGS. 4-6, the processing circuitry 36 routinely
performs a directory check operation to determine whether
the number valid directory entries 100 in the directory has
fallen back to zero and, if so, reclaims blocks 52 from the
directory’s inode structure 80.

FIGS. 4-6 show, by way of example, a directory’s inode
structure 80 at different times of use. In particular, FIG. 4
shows an example directory’s inode structure 80 shortly after
the directory has been created and valid directory entries 100
have been added to the directory (e.g., at time T(1)). FIG. 5§
shows the example directory’s inode structure 80 at a subse-
quent time when a few of the directory entries 100 have been
removed from the directory (e.g., at time T(2)), i.e., some of
the directory entries 100 have been invalidated. F1G. 6 shows
a process of truncating the example directory’s inode struc-
ture 80 when the remaining valid directory entries 100 have
been removed from the directory (e.g., at time T(3)).

FIG. 4 shows the example directory’s inode structure 80
after the processing circuitry 36 has added directory entries
100 to the example directory. Such addition may have
occurred incrementally over a period of use. As shown in FIG.
4, the example directory’s inode structure 80 now includes six
valid directory entries 100(1), . . . 100(6). Additionally, the
entry count field 90 stores a value of 6 to indicate that the
directory currently holds six valid directory entries 100.

It should be understood that the particular storage that
holds the directory entries 100 was allocated from the pool 50
of free filesystem blocks 52 by the processing circuitry 36 as
the directory entries 100 were added to the directory (also see
FIG. 1). Along these lines, the pointer fields 92 of the direc-
tory’s inode structure 80 contain pointers to these blocks 52 in
a traditional manner. Some of the allocated blocks 52 may
contain other pointers (e.g., singly indirect pointers, doubly
indirect pointers, etc.) to other allocated blocks 52 containing
the directory entries 100.

It should be further understood that the processing circuitry
36 routinely performs a directory check operation to deter-
mine whether the directory is empty. Such a directory check
operation may be performed each time a directory entry is
removed from the directory. If the processing circuitry 36
determines that the number of valid directory entries 100
currently in the directory is zero, the processing circuitry 36
reclaims the blocks 52 that were earlier allocated to hold the
directory entries 100.

After some additional time of operation, suppose that the
processing circuitry 36 has removed three valid directory
entries 100 from the directory, namely, the directory entries
100(2), 100(3) and 100(4). In this situation and as shown in
FIG. 5, the processing circuitry 36 has invalidated the direc-
tory entries 100(2), 100(3) and 100(4). One suitable tech-
nique for marking a directory entry 100 as invalid is to replace
the inode number in that directory entry 100 with zeroes.

Additionally, when the processing circuitry 36 marks a
directory entry 100 invalid, the processing circuitry 36
updates the contents of the entry count field 90. As shown in
FIG. 5, the processing circuitry 36 has set the contents of the
entry count field 90 to a value of 3 to indicate that the directory
currently holds three valid directory entries 46.

As mentioned earlier, each time a valid directory entry 100
is removed from the directory, the processing circuitry 36
performs a directory check operation to determine whether
the directory is empty. In particular, the processing circuitry
36 evaluates the value in the entry count field 90 to ascertain
whether the value indicates that there are no valid directory

US 9,047,299 B1

7

entries 100 left in the directory. In this situation shown in FIG.
5, there is still at least one valid directory entry 100 in the
directory (i.e., there are 3 valid directory entries 100 left in the
directory) so the directory is not empty.

Additionally (still with reference to the situation in FIG. 5),
the storage that was allocated to the directory’s inode struc-
ture 80 is still consumed by the directory’s inode structure 80.
However, within the allocated storage, only the directory
entries 100(1), 100(5) and 100(6) validly identify other files
46. That is, the directory entries 100(2),100(3) and 100(4) are
simply marked as invalid but still consume filesystem blocks
52 (illustrated by the strikethrough lines in FIG. 5). In some
arrangements, invalidation of a directory entry 100 involves
the processing circuitry 36 overwriting the inode number of
that directory entry 100 with zeroes (also see FIG. 3).

It should be understood that files 46 could be added to the
directory after some files 46 have been deleted. In such a
situation, the processing circuitry 36 may allocate additional
blocks 52 from the pool 50 of free filesystem blocks 52 to the
directory’s inode structure 80 to hold additional directory
entries 100 identifying the added files 46 (e.g., to append new
directory entries 100 to the directory entry 100(6)), and
update the value of the entry count field 90. The term “may
allocate” is used since some systems attempt to add directory
entries to the first available unoccupied entry in the directory
structure. If the attempt fails (e.g., if there is not enough space
available to fit the entry because the filename is too large to
occupy the any of the unoccupied entries), additional blocks
52 from the pool 50 of free filesystem blocks 52 are allocated
to the directory’s inode structure 80.

After some further time of operation, suppose that the
processing circuitry 36 finally removes the remaining valid
directory entries 100 from the directory. At this point, the
processing circuitry 36 performs a directory check operation
and determines that the directory is now empty. In response,
the processing circuitry 36 performs a block reclamation
operation to return the blocks 52 allocated to hold the direc-
tory entries 100 back to the pool 50 of free file system blocks
52 (FIG.1).

In particular and as shown on the left side of FIG. 6, the
processing circuitry 36 invalidates the last directory entry 46
and changes the value in the entry count field 90 to indicate
the number of valid directory entries 100 in the directory is
zero when the last. Then, the processing circuitry 36 performs
the directory check operation and determines that the direc-
tory is now empty. In response to such detection, the process-
ing circuitry 36 automatically performs a reclamation opera-
tion to reclaim the blocks 52 that were earlier allocated to hold
the directory entries 100 leaving a truncated directory inode
structure 80 as shown on the right side of F1G. 6, i.e., the main
portion 94 (also see FI1G. 2). Along these lines, the processing
circuitry 36 returns the earlier allocated blocks 52 back to the
pool 50 of free filesystem blocks 52, and restores the direc-
tory’s inode structure 80 to its initial inline condition.

At this point, the returned filesystem blocks 52 are again
available for allocation. Furthermore, if new directory entries
100 are later added to the directory, the processing circuitry
36 will allocate blocks 52 from the pool 50 of free filesystem
blocks 52 and performance in accessing the directory’s inode
structure 80 will be improved (e.g., less overhead traversing
the directory’s inode structure 80).

In some arrangements, the processing circuitry 36 lever-
ages off of an existing cleanup utility that reclaims blocks 52
from ordinary files 46 when the ordinary files are deleted. The
cleanup utility may be formed by the processing circuitry 36
executing certain cleanup code of the operating system 46
(FIG. 1). To reclaim blocks 52 using the cleanup utility, the

10

15

20

25

30

35

40

45

50

55

60

65

8

processing circuitry 36 allocates a new inode structure and
copies the contents of the main portion 94 of the directory’s
inode structure 80 to the new inode structure (FIG. 2). Here,
the new inode structure 80 identifies the same block map used
by the original directory inode structure 80 and thus identifies
all of the allocated blocks 52 used as indirect blocks and used
to hold the directory entries 100.

Next, the processing circuitry 36 overwrites, in a type of
file field of the new inode structure, a copy of the directory
type indicator with an ordinary type indicator to indicate that
the new inode structure identifies an ordinary file rather than
adirectory. That is, the type of file field 88 (also see FIG. 2) of
the directory’s inode structure 80 initially has a value which
indicates that the file 46 is a directory. Here, the processing
circuitry 36 changes the value of the type of file field in the
new inode structure to indicate an ordinary file. Essentially,
the processing circuitry 36 modifies the type field 88 to spoof
the cleanup utility into processing the copy of the directory’s
inode structure as an ordinary deleted file.

Then, the processing circuitry 36 submits the new inode
structure to the cleanup routine which processes the new
inode structure as if an ordinary file has been deleted to return
the set of filesystem blocks to the pool 50 of free filesystem
blocks. Along these lines, the cleanup utility is able to identify
and de-allocate the blocks 52 based on the pointers as if the
new inode structure was an ordinary file. The processing
circuitry 36 then de-allocates the new inode structure as well.
Further details will now be provided with reference to FIG. 7.

FIG. 71is a flowchart of a procedure 200 which is performed
by the electronic apparatus 22 to reclaim blocks 52 of an
inode structure 80 for a directory when the directory becomes
empty. At 202, the processing circuitry 36 of the electronic
apparatus 22 modifies a directory’s inode structure 80 which
identifies a filesystem directory. After the modification is
made, the directory’s inode structure 80 includes a set of
filesystem blocks 52 which was allocated to the directory’s
inode structure 80 to hold filesystem data (also see FIG. 4).

At 204, after modifying the directory’s inode structure 80,
the processing circuitry 36 performs a directory check opera-
tion to determine whether the directory is empty. In particular,
the processing circuitry 36 evaluates the contents of the entry
count field 90 and considers the directory to be empty when
the represented value is zero. Otherwise, the directory is
considered not empty. If the directory is empty, 204 proceeds
to 206. If the directory is not empty, 204 proceeds to 208.

At 206, the processing circuitry 36 reclaims, from the
directory’s inode structure 80, the set of filesystem blocks 52
which was allocated to the directory’s inode structure 80 to
hold the filesystem data. Here, since the result of the directory
check operation indicated that the filesystem directory is
empty, the set of filesystem blocks 52 are returned to the pool
50 of free filesystem blocks 52 for reuse (also see FIGS. 1 and
6).

At 208, the processing circuitry 36 does not reclaim the set
of filesystem blocks 52 from the directory’s inode structure
80. That is, the result of the directory check operation indi-
cated that the filesystem directory is not empty (also see
FIGS. 3 and 4).

As mentioned above, improved techniques involve auto-
matically releasing filesystem blocks 52 from a directory’s
inode structure 80 back to an available pool 50 of filesystem
blocks 52 when the number valid directory entries 100 in the
directory becomes zero. Such techniques may prevent the
size of the directory’s inode structure 80 from always increas-
ing, e.g., the inode structure 80 may be restored to its original
size when the directory becomes empty. Accordingly, perfor-
mance in accessing new files 46 which are subsequently

US 9,047,299 B1

9

added to that directory is improved. Furthermore, release of
filesystem blocks 52 back to the available pool 50 of filesys-
tem blocks 52 replenishes the supply of free filesystem blocks
for subsequent re-use.

While various embodiments of the present disclosure have
been particularly shown and described, it will be understood
by those skilled in the art that various changes in form and
details may be made therein without departing from the spirit
and scope of the present disclosure as defined by the
appended claims.

For example, it should be understood that the directory
check operation was described above as being performed
after a file is removed from a directory by way of example
only. In other arrangements, a daemon runs in the background
to periodically inspect directories and reclaim blocks 52 from
any directories that are empty. In yet other arrangements, the
directory check operation is performed after any type of
directory access operation (not just a file deletion).

Additionally, it should be understood that the use of the
entry count field 90 was described above as a way of tracking
the number valid directory entries 100 in a directory. It should
be understood that other techniques are suitable as well. For
example, if performance is not an issue, the processing cir-
cuitry 36 can scan the directory entries 100 of the directory’s
inode structure 80 for valid directory entries 100 and, as long
as there is at least one valid directory entry 100 in the direc-
tory’s inode structure 80, the processing circuitry 36 refrains
from reclaiming blocks. However, if there processing cir-
cuitry 36 determines that there are no valid directory entries
100 after the scan is complete, the processing circuitry 36
considers the directory empty and reclaims blocks. Such
modifications and enhancements are intended to belong to
various embodiments of this disclosure.

What is claimed is:
1. A method of managing filesystem blocks of a filesystem,
the method comprising:

modifying an inode structure which identifies a filesystem
directory, the inode structure currently including a set of
filesystem blocks which was allocated to the inode struc-
ture to hold filesystem data;

after modifying the inode structure, performing a directory
check operation to determine whether the filesystem
directory is empty; and

reclaiming, from the inode structure, the set of filesystem
blocks which was allocated to the inode structure to hold
the filesystem data when a result of the directory check
operation indicates that the filesystem directory is
empty, and not reclaiming the set of filesystem blocks
from the inode structure when the result of the directory
check operation indicates that the filesystem directory is
not empty;

wherein the inode structure includes a type of file field
which stores a directory type indicator indicating that
the inode structure identifies a filesystem directory; and

wherein reclaiming the set of filesystem blocks includes:

copying contents of the inode structure to a new inode
structure,

overwriting, in a type of file field of the new inode struc-
ture, a copy of the directory type indicator with an ordi-
nary type indicator to indicate that the new inode struc-
ture identifies an ordinary file, and

submitting the new inode structure to a cleanup routine
which processes the new inode structure as if an ordinary
file has been deleted from the filesystem to return the set
of filesystem blocks allocated to the inode structure to a
pool of free filesystem blocks.

10

15

20

25

30

35

40

45

50

55

60

65

10

2. A method as in claim 1, further comprising:

prior to modifying the inode structure, allocating the set of
filesystem blocks to the inode structure from the pool of
free filesystem blocks and storing, as the filesystem data,
a set of directory entries in the set of filesystem blocks,
the set of directory entries identifying a set of files resid-
ing in the filesystem directory.

3. A method as in claim 2 wherein modifying the inode
structure includes:

marking a directory entry of the set of directory entries to

indicate that a file of the set of files no longer resides in
the filesystem directory.

4. A method as in claim 3 wherein performing the directory
check operation to determine whether the filesystem direc-
tory is empty includes:

ascertaining whether any files continue to reside in the

filesystem directory, the filesystem directory being
empty when no files currently reside in the filesystem
directory, and the filesystem directory not being empty
when at least one file currently resides in the filesystem
directory.

5. A method as in claim 4 wherein the inode structure
further includes an entry count field which stores an entry
count value to identify the number of valid directory entries
currently residing in the set of filesystem blocks allocated to
the inode structure; and wherein modifying the inode struc-
ture further includes:

when marking the directory entry to indicate that the file no

longer resides in the filesystem directory, updating the
entry count field to store a new entry count value.

6. A method as in claim 5 wherein ascertaining whether any
files continue to reside in the filesystem directory includes:

reading the new entry count value from the entry count field

of the inode structure and, based on the new entry count
value, determining whether the number of files currently
residing in the filesystem directory is zero.

7. A method as in claim 4 wherein reclaiming the set of
filesystem blocks which was allocated to the inode structure
includes:

returning the set of filesystem blocks to the pool of free

filesystem blocks for re-allocation.

8. A method as in claim 7, further comprising:

when reclaiming the set of filesystem blocks which was

allocated to the inode structure, truncating the inode
structure to return the inode structure to an initial inline
state.

9. A method as in claim 7 wherein the inode structure
further includes an entry count field which stores an entry
count value to identify the number of valid directory entries
currently residing in the set of filesystem blocks allocated to
the inode structure; and wherein the method further com-
prises:

changing the entry count value of the inode structure in

response to changing the number of files currently resid-
ing in the filesystem directory.

10. A method as in claim 1 wherein modifying the inode
structure includes invalidating a directory entry of the inode
structure, the directory entry having previously stored an
inode number identifying a file (i) which resided in the file-
system directory identified by the inode structure and (ii)
which now has been deleted from the filesystem directory;
and

wherein performing the directory check operation to deter-

mine whether the filesystem directory is empty includes
discovering whether the number of files in the filesystem

US 9,047,299 B1

11

directory is zero while the inode structure continues to
identify the filesystem directory, the filesystem directory
being ready to hold a file.

11. A computer program product having a non-transitory
computer readable medium which stores a set of instructions
to manage filesystem blocks of a filesystem, the set of instruc-
tions, when carried out by computerized circuitry, causing the
computerized circuitry to perform a method of:

modifying an inode structure which identifies a filesystem

directory, the inode structure currently including a set of
filesystem blocks which was allocated to the inode struc-
ture to hold filesystem data;

after modifying the inode structure, performing a directory

check operation to determine whether the filesystem
directory is empty; and

reclaiming, from the inode structure, the set of filesystem

blocks which was allocated to the inode structure to hold
the filesystem data when a result of the directory check
operation indicates that the filesystem directory is
empty, and not reclaiming the set of filesystem blocks
from the inode structure when the result of the directory
check operation indicates that the filesystem directory is
not empty;

wherein the inode structure includes a type of file field

which stores a directory type indicator indicating that
the inode structure identifies a filesystem directory; and
wherein reclaiming the set of filesystem blocks includes:
copying contents of the inode structure to a new inode
structure,
overwriting, in a type of file field of the new inode struc-
ture, a copy of the directory type indicator with an ordi-
nary type indicator to indicate that the new inode struc-
ture identifies an ordinary file, and

submitting the new inode structure to a cleanup routine

which processes the new inode structure as if an ordinary
file has been deleted from the filesystem to return the set
of filesystem blocks allocated to the inode structure to a
pool of free filesystem blocks.

12. A computer program product as in claim 11 wherein the
method further comprises:

prior to modifying the inode structure, allocating the set of

filesystem blocks to the inode structure from the pool of
free filesystem blocks and storing, as the filesystem data,
a set of directory entries in the set of filesystem blocks,
the set of directory entries identifying a set of files resid-
ing in the filesystem directory.

13. A computer program product as in claim 12 wherein
modifying the inode structure includes:

marking a directory entry of the set of directory entries to

indicate that a file of the set of files no longer resides in
the filesystem directory.

14. A computer program product as in claim 13 wherein
performing the directory check operation to determine
whether the filesystem directory is empty includes:

ascertaining whether any files continue to reside in the

filesystem directory, the filesystem directory being
empty when no files currently reside in the filesystem
directory, and the filesystem directory not being empty
when at least one file currently resides in the filesystem
directory.

15. A computer program product as in claim 14 wherein the
inode structure further includes an entry count field which
stores an entry count value to identify the number of valid
directory entries currently residing in the set of filesystem
blocks allocated to the inode structure; and wherein modify-
ing the inode structure further includes:

20

30

40

45

55

65

12

when marking the directory entry to indicate that the file no
longer resides in the filesystem directory, updating the
entry count field to store a new entry count value.

16. A computer program product as in claim 15 wherein
ascertaining whether any files continue to reside in the file-
system directory includes:

reading the new entry count value from the entry count field

of the inode structure and, based on the new entry count
value, determining whether the number of files currently
residing in the filesystem directory is zero.

17. A computer program product as in claim 14 wherein
reclaiming the set of filesystem blocks which was allocated to
the inode structure includes:

returning the set of filesystem blocks to the pool of free

filesystem blocks for re-allocation.

18. A computer program product as in claim 11 wherein
modifying the inode structure includes invalidating a direc-
tory entry of the inode structure, the directory entry having
previously stored an inode number identifying a file (i) which
resided in the filesystem directory identified by the inode
structure and (ii) which now has been deleted from the file-
system directory; and

wherein performing the directory check operation to deter-

mine whether the filesystem directory is empty includes
discovering whether the number of files in the filesystem
directory is zero while the inode structure continues to
identify the filesystem directory, the filesystem directory
being ready to hold a file.

19. An electronic apparatus, comprising:

memory; and

control circuitry coupled to the memory, the memory stor-

ing instructions which, when carried out by the control

circuitry, cause the control circuitry to:

modify an inode structure which identifies a filesystem
directory, the inode structure including a set of file-
system blocks which was allocated to the inode struc-
ture to hold filesystem data following modification,

after modifying the inode structure, perform a directory
check operation to determine whether the filesystem
directory is empty, and

reclaim, from the inode structure, the set of filesystem
blocks which was allocated to the inode structure to
hold the filesystem data when a result of the directory
check operation indicates that the filesystem directory
is empty, and not reclaim the set of filesystem blocks
from the inode structure when the result of the direc-
tory check operation indicates that the filesystem
directory is not empty;

wherein the inode structure includes a type of file field

which stores a directory type indicator indicating that

the inode structure identifies a filesystem directory; and

wherein the control circuitry, when reclaiming the set of

filesystem blocks, is constructed and arranged to:

copying contents of the inode structure to a new inode
structure,

overwriting, in a type of file field of the new inode
structure, a copy of the directory type indicator with
an ordinary type indicator to indicate that the new
inode structure identifies an ordinary file, and

submitting the new inode structure to a cleanup routine
which processes the new inode structure as if an ordi-
nary file has been deleted from the filesystem to return
the set of filesystem blocks allocated to the inode
structure to a pool of free filesystem blocks.

20. An electronic apparatus as in claim 19 wherein the
instructions which, when carried out by the control circuitry,
further cause the control circuitry to:

US 9,047,299 B1

13

prior to modifying the inode structure, allocate the set of
filesystem blocks to the inode structure from the pool of
free filesystem blocks and storing, as the filesystem data,
a set of directory entries in the set of filesystem blocks,
the set of directory entries identifying a set of files resid-
ing in the filesystem directory;

wherein modifying the inode structure includes marking a
directory entry of the set of directory entries to indicate
that a file of the set of files no longer resides in the
filesystem directory; and

wherein performing the directory check operation to deter-
mine whether the filesystem directory is empty includes
ascertaining whether any files continue to reside in the
filesystem directory, the filesystem directory being

10

empty when no files currently reside in the filesystem 15

directory, and the filesystem directory not being empty
when at least one file currently resides in the filesystem
directory.

21. An electronic apparatus as in claim 19 wherein the
control circuitry, when modifying the inode structure, is con-
structed and arranged to invalidate a directory entry of the
inode structure, the directory entry having previously stored

20

14

an inode number identifying a file (i) which resided in the
filesystem directory identified by the inode structure and (ii)
which now has been deleted from the filesystem directory;
and

wherein the control circuitry, when performing the direc-

tory check operation to determine whether the filesys-
tem directory is empty, is constructed and arranged to
discover whether the number of files in the filesystem
directory is zero while the inode structure continues to
identify the filesystem directory, the filesystem directory
being ready to hold a file.

22. An electronic apparatus as in claim 19 wherein the
control circuitry, when performing the directory check opera-
tion to determine whether the filesystem directory is empty, is
constructed and arranged to:

ascertain whether any files continue to reside in the file-

system directory, the filesystem directory being empty
when no files currently reside in the filesystem directory,
and the filesystem directory not being empty when at
least one file currently resides in the filesystem directory.

#* #* #* #* #*

